A Graph Based Query Focused Multi-Document Summarization
نویسندگان
چکیده
A user’s information need, normally represented as a search query, can be satisfied by creating a query focused coherent and readable summary, by fusing the relevant parts of information from multiple documents. While aggregating the information from multiple documents, the quality of the summary is improved by eliminating redundant information from the document set. In this paper, we focus on removing such redundant information and identifying the essential components from multiple documents (represented as a single global semantic graph), with respect to the given query (represented as a query graph). While the redundancy elimination is carried out using various levels of graph matching which are then indicated through canonical labeling of graphs, the selection of essential components for a query focused summary is performed, through the modified spreading activation theory, where the query graph is also integrated during the spreading activation over the global graph. The proposed system shows significant improvements in generating summaries when compared to other existing summarization systems. A Graph Based Query Focused Multi-Document Summarization
منابع مشابه
Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملAnswering Questions from Multiple Documents - the Role of Multi-Document Summarization
Ongoing research work on Question Answering using multi-document summarization has been described. It has two main sub modules, document retrieval and Multi-document Summarization. We first preprocess the documents and then index them using Nutch with NE field. Stop words are removed and NEs are tagged from each question and all remaining question words are stemmed and then retrieve the most re...
متن کاملMulti-Document Summarization using Automatic Key-Phrase Extraction
The development of a multi-document summarizer using automatic key-phrase extraction has been described. This summarizer has two main parts; first part is automatic extraction of Key-phrases from the documents and second part is automatic generation of a multidocument summary based on the extracted key-phrases. The CRF based Automatic Keyphrase extraction system has been used here. A document g...
متن کاملGraph-based models for multi-document summarization
University of Ljubljana Faculty of Computer and Information Science Ercan Canhasi Graph-based models for multi-document summarization is thesis is about automatic document summarization, with experimental results on general, query, update and comparative multi-document summarization (MDS). We describe prior work and our own improvements on some important aspects of a summarization system, incl...
متن کاملExperiments in Cross Language Query Focused Multi-Document Summarization
The twin challenges of massive information overload via the web and ubiquitous computers present us with an unavoidable task: developing techniques to handle multilingual information robustly and efficiently, with as high quality performance as possible. Previous research activities on multilingual information access systems have studied cross-language information retrieval (CLIR), information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJIIT
دوره 10 شماره
صفحات -
تاریخ انتشار 2014